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Abstract: The present research studied fault diagnosis of
composite sheets using vibration signal processing and
artificial intelligence (AI)-based methods. To this end, vi-
bration signals were collected from sound and faulty com-
posite plates. Using different time-frequency signal anal-
ysis and processing methods, a number of features were
extracted from these signals and the most effective fea-
tures containing further information on these composite
plateswere provided as input to different classification sys-
tems. The output of these classification systems reveals the
faults in composite plates. The different types of classifi-
cation systems used in this research were the support vec-
tormachine (SVM), adaptive neuro-fuzzy inference system
(ANFIS), k-nearest neighbor (k-NN), artificial neural net-
works (ANNs), Extended Classifier System (XCS) algorithm,
and the proposed improved XCS algorithm. The research
results were reflective of the superiority of ANFIS in terms
of precision,while thismethod had the highest process du-
rationwith an equal number of iterations. The precision of
the proposed improvedXCSmethodwas lower than that of
ANFIS, but thedurationof theprocesswas shorter than the
ANFIS method with an equal number of iterations.

Keywords: Composite plate, XCS, signal processing, artifi-
cial intelligence

1 Introduction
Demand for materials with high strength and stiffness and
lowweight has increased in various industries since about
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half a century ago. Because no single-component mate-
rial could manage to meet all these needs, the composite
theory was introduced. The advantage of the composite
is that it reveals the best features of its constituents and
has features that can be viewed in none of its individual
components. Fiber composites consist of two constituents,
including fiber and matrix. The fibers can be placed at
the matrix in different directions, and this enhances the
strength of the composite in the given direction. Defects in
a composite decrease its strength, especially during load-
ing. Therefore, it is of necessity to identify the defects, and
this requires a system of higher levels of reliability and
security and lower costs [1, 2]. On the other hand, follow-
ing the evolution of fault diagnostics, they have been used
as preventive maintenance means in recent years. Before
the emergence of the conditional fault diagnosis methods,
which have been used so far, fault diagnosis was defined
as maintenance before system damage. However, implicit
faults require amethod ofmaintenance inwhich diagnosis
takes place based on themeasurement data. Asmentioned
in References [3–6], many researchers still investigate into
diagnostics. In an industrial production process, insignif-
icant errors may result in product damage, increased pro-
duction costs, line shutdown, and environmental damage.
The need for meeting this increasing demand has led to
considerablemeasures formonitoring andmaintaining in-
dustrial systems and detecting faults [7].

Numerous studies have been carried out on fault di-
agnosis in composite plates using experimental analyses.
Song et al. [8] introduced a complete methodology based
on the Laplace transform for the analysis of free bending
vibrations in laminated composite cantileverswith surface
cracks. They used Hamilton’s principle of variation and
Timoshenko’s beam theory to develop the damage iden-
tification technique. Just-Agosto et al. [9] used the neural
network model in combination with the effects of thermal
and vibratory damage identification to develop the dam-
age identification method. They used the enhanced tech-
nique to sandwich composites for crack detection. Perera
et al. [10] applied the genetic algorithm (GA) to the multi-
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criteria optimization of damage identification. They com-
pared the GA optimization results, which was based on
the union functions, to the Pareto optimization results.
Friswell et al. [11] combined the genetic and eigen sensi-
tivity algorithms to locate damage in structures. They used
GA to optimize discrete damage location variables. Fang et
al. [12] explored the performance of the structural damage
detection technique, whichwas based on the frequency re-
sponse and neural network model. They studied the most
expensive heuristic adaptable mitigation algorithm to im-
prove convergence speed. They concluded that the neural
network technique could estimate the damage conditions
with high precision.

Beena and Gnguli [13] proposed a new fuzzy-based
fault detection method for structural systems. They used
continuous mechanisms and the finite element method to
measure vibration parameters that cause damage to struc-
tural systems. Their proposed technique functions prop-
erly with noise-related structure damage. They also used
the neural network model based on Hebbian learning to
develop a damage identification system using fuzzy cog-
nitive maps. Kuo and Chang [14] proposed a fault diagno-
sis system that used data acquisition, feature extraction,
and pattern recognition to diagnose faults in blades with
the aid of double slip sensors. The feature extraction algo-
rithm was based on the backward diffusion artificial neu-
ral network (ANN) model. The fuzzy logic technique was
also used to accelerate the diffusion process. According to
these researchers, the system results were extremely simi-
lar to the experimental analysis results.

Wang et al. [15] compared the performances of two
fault diagnosis systems, namely, the recurrent neural net-
works and fuzzy neural systems, using two benchmark
data sets. As stated, it was found that the prediction sys-
tem (which depends on the future consequences and fault
prediction) is more valid than the neural network fault
diagnosis system in monitoring motor conditions. Pawar
and Ganguli [16] designed a structural health monitoring
methodology that used the genetic fuzzy system for in
situ fault identification. They used the displacement and
force-based measurement differences between damaged
and non-damaged conditions to develop rules. They used
data unions for the genetic and fuzzy systems. Extensive
research has been carried out on the monitoring of the in-
duction motor bearing in the past three decades [17]. Bear-
ings normally demonstrate local faults in the inner rings,
outer rings, or cages. The size and period of the impacts
are determined by rotation speed, fault location, and bear-
ing characteristic dimensions. Hence, Thomson and Tan-
don et al. used vibration signals to monitoring bearing
health [18, 19].

Singh et al. published review articles on the health
monitoring of the induction motors based on the current
and noncurrent signals [20]. As bearing failure in the in-
ductionmotors affects the stator current signal, Benbouzid
used the frequency and time–frequency methods of the
current signal analysis [21, 22]. Frequency methods have
been widely used with the vibration and current signal
analyses to diagnose faults in bearings. Lebold et al. used
the frequency domain methods, which were mainly based
on the Fourier transform, for fault diagnosis [23]. Yazici
used more advanced methods than FFT such as the short-
time Fourier transform to detect faults in bearings [24].

Li et al. [25] calculated the energy diffused around the
harmonics and used the results as the input to the neu-
ral networkmodel. Nikolaou et al. used thewavelet packet
method to monitor faults in bearing [26]. Prabhakar et al.
used the wavelet transform method to diagnose fault [27].
Eren et al.used thewavelet packet transformmethod (with
the Coiflet4 wavelet) and the current signal analysis (with
the effective value criterion) to diagnose faults in the outer
ring and cage of a bearing [28]. Themain part of the project
is to improve the accuracy of the detection systems based
on features or information added to the artificial intelli-
gence (AI) model. Hence, the feature selection is of impor-
tance. This study was to investigate the possibility of im-
proving the feature selection using the AI models such as
ANN, neuro-fuzzy neural network, Extended Classifier Sys-
tem (XCS) algorithm, and Extended XCS Algorithm.

The proposed method is presented in Section 2. Sec-
tion 3 deals with the laboratory experiments. In Section 4,
the analysis and evaluation of laboratory findings and a
method to improve the detection of defects in composite
panels are discussed. Finally, Section 5 contains the find-
ings from the study.

2 The Proposed Method (XCSN)
Machine learning refers to a wide range of supervised and
unsupervised learning algorithms that aim to avoid ex-
haustive search in data mining and replace these time-
consuming searches with intelligent methods that involve
identification of patterns in data and data classification
or behavioral modeling. Many data mining methods have
been proposed in the past two decades. These methods
use different supervised, unsupervised, or reinforcement
learning algorithms to recognize and assign patterns. Clas-
sifier systems are a successful example of these methods.

In general, classifier systems include a set of “if-then”
rules, each of which offers a potential solution to the prob-
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lem. These rule sets are assessedgraduallywith the aid of a
reinforced learningmechanism and are updated at certain
intervals using an GA. In the course of this gradual evolu-
tion, the system learns behavior from the environment and
presents proper solutions touser queries in the application
phase.

The first classifier system was the learning classifier
system (LCS), which was introduced in 1976 by Holland.
In this system, each rule was evaluated with a criterion
called “strength.” The strengthof a rulewould increase the
proportion to its accurate responses to training problems
within the framework of reinforcement learning criteria,
and an evolutionary search algorithm (normally the GA)
was responsible for the generation of new rules and omis-
sion of inefficient rules. At the end of the training phase,
the data rules offered the relative potential for proposing
acceptable solutions to new problems. However, the suc-
cess of LCS depended on the selection of suitable values
for system control parameters, which hinged on the expe-
rience of the system designer.

After the introduction of the LCS, other classifier sys-
tems such as the XCS were proposed. Before the introduc-
tion of XCS in 1995, these systems were poorly capable of
finding proper solutions. However, since 1995, these sys-
tems have transformed into more intelligent and precise
systems, and it is currently believed that XCS and its en-
hanced versions are capable of solving complicated prob-
lems without the need for adjusting parameters. With the
emergence of the extended classifier system with contin-
uous variables (XCSR), some of the weaknesses of binary
classifier systems such as their inability to introduce cer-
tain ranges for variable values were overcome, and these
systems are known as one of the most successful learning
agents for solving data mining problems in partially ob-
servable environments.

In the common strategy, in training XCSR, only the fit-
ness of rules accurately responding to training data is in-
creased. In otherwords, the likelihood of participation of a
rule in the new rules generation process directly depends
on the response of that rule to training data, and a realis-
tic calculation of this likelihood calls for a large amount
of training data. As training data is usually limited with
actual problems and it is difficult to increase the amount
of data, XCSR is not effective in such applications with re-
gards to calculation time and costs.

In the following, a new method for improving the
performance and convergence rate of XCSR using limited
training data is proposed.

In the proposed method, first, a limited training data
set is used to modify rule properties (including “predic-
tion,” “prediction error,” and “fitness”) using the follow-

ing relations.

If expi < 1/β then Pi = Pi + (R − Pi) /expi, (1)
εi = εi + (|R − Pi| − εi) /expi

If expi ≥ 1/β then Pi = Pi + β (R − Pi) , (2)
εi = εi + β(|R − Pi| − εi

If εi < ε0 then ki = 1 (3)

If εi ≥ ε0 then ki = β
(︀
εi/ε0

)︀
− 𝛾 (4)
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]︁
(5)

where is the learning rate, denotes the rule strength, shows
the prediction error, exp is the rule experience,P is the rule
prediction, R is the environment reward, k is the rule pre-
cision, and f stands for the rule fitness. The index i shows
the rule number in the rule set. In the next step, to in-
crease the diversity of the data sets, the “remainder ran-
dom selection” is used to select several pairs of parents
from the strings showing the condition section of the exist-
ing data. The condition section of the new data is created
using the crossover method applied to the parent strings.
In this method, the value of each conditional variable is
obtained using the following relation:

ai = α(aiF) + (1 − α)(aiM) (6)

where ai is the i-th conditional variable in the new data
set, aiF is the i-th conditional variable in the first parent
(father), aiM is the i-th conditional variable in the second
parent (mother), and is the parent’s participation coeffi-
cient, which is determined with an adaptive method. The
new data performance section is also generated using the
nonlinearmapping of the conditional variable space to the
performance space using the existing data. Diversification
of the existing data continues to satisfy the learning cessa-
tion condition (e.g., until the percentage of accurate solu-
tions to the test data reaches a predetermined threshold)
using the completed data. The text is to be typeset in 10
pt Times Roman, single spaced with baselineskip of 13 pt.
Text area (excluding running title) is 5 inches (30 picas)
wide and 7.8 inches (47 picas) high. Final pagination and
insertion of running titles will be done by the publisher.
Number each page of the manuscript lightly at the bottom
with a pencil.
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3 Laboratory Experiment
The mechanical properties of composite materials can be
greatly reduced in the presence of defects and flaws. Al-
though delamination and fiber defects are the normal con-
sequences of hitting, the composites can also experience
degradation because of inclusions. Non-detection of such
defects may be caused by the point that the defects are
not sensitive enough to conventional features of time do-
main such as peak amplitude and signal amplitude. Fur-
thermore, there would be some problems when the prop-
erties of the substrate and bonding material have similar
acoustic impedance. In this section, to diagnose faults and
classify the composite plates a healthy, a slightly defec-
tive, and amoderately defective composite platewere used
alongwith a composite plate with a separate location fault
as shown in the Figure 1.

In the slightly defective composite plate (Figure 1b), in
addition to the composite layers, a thin layer is embedded
in the marked section of the composite plate. Similarly, in
the moderately defective composite plate (Figure 1d), the
same process was completed using a larger layer. In the
composite platewith the separate location fault (Figure 1c),
the layer was embedded in another part of the composite
plate.

To obtain the experimental data and vibration signals,
vector data sets were used. The data sets contain the fol-
lowing items:

(a) (b)

(c) (d)

Figure 1: (a) Healthy composite plate, (b) slightly defective compos-
ite plate, (c) a composite plate with a separate location fault, and (d)
a moderately defective composite plate

1. Defective and non-defective composite panels of the
same length and width

2. Four-channel pulse data logger (Model c3560)
3. PULSE Lab Shop Software manufactured by B & K

Company
4. ENDEVCO accelerometer (Model C2222)
5. Composite panel stools
6. Hammer RION (Model PH-5120463)

As specified in Figures 2 and 3, one of the four inputs
connects the pulse data logger to a single-axis accelerom-
eter, which simultaneously performs data logging with a
specified frequency range, and connects another input to
a hammer embedded for hitting. Vibration signals with a
sampling frequency of 800 Hz have performed sampling
for 8 s for all composite panels. In this study, the accelera-
tion signal is used in the Z-direction that is perpendicular
to the composite panels.

Figure 2: 2 B & K data logger

In this procedure, each composite plate is connected
to a metal stool using an elastic string (Figure 4). An EN-
DEVCO 2222c accelerometer was installed for all of the
45 points marked on all of the composite plates. A spe-
cial hammer was used to hit a part of the composite, and
the recorded signal was displayed on the computer screen.
This procedure was repeated three times for all of the
points. Afterwards, the signals recorded from each com-
posite plate were saved in a separate file.
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Figure 3: Schematic of PULSE Lab Shop Software

Figure 4: A view of a vibration testing on the slightly defective
composite plate

4 Analysis and evaluation of
experimental results

The analysis and evaluation of the experimental results ob-
tained in theVibration andAcoustics Laboratory of Tehran
University are described in this section.

First, the result data were preprocessed and prepared,
and then the feature extraction procedure (including ex-
traction of time, frequency, and time–frequency features)
was applied to the data. The IDE algorithm and sensitiv-
ity analysis method were used to select the most effective
extracted features from the data. Afterwards, the faults
of composite plates were classified using XCS, adaptive
neuro-fuzzy inference system (ANFIS), MLP, radial basis
function (RBF), support vector machine (SVM), and KNN,
and the proposedmethod and the results of these different
classifier methods were compared at the end.

4.1 Preprocessing vibration signals

A sample of vibration signals obtained from testing the
composite panels for 8 s at a sampling frequency of 800
Hz is shown in Figure 5.

Asweobserve, no specific information indicating their
features can be achieved from the appearance of this sig-
nal and other similar signals. Therefore, there is a need to
analyze them in various domains.
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Figure 5: A sample of vibration signals

In order for the required number of data to be gener-
ated to train classificationmethods, averagingwas carried
out on all three cycles. After applying this procedure, 60 cy-
cles of data were obtained for each of the composite pan-
els; thus, a total of 240 data sets were created for different
defects of the composite panels.

4.2 Feature extraction of vibration signals

Raw data often face problems such as noise, bias, and ex-
treme changes in dynamic sampling range, and their use
wouldweaken further designs. Preprocessing also consists
of more complex conversions to reduce the data dimen-
sions. To sum, it can be noted that the data preprocess-
ing includes all conversions performed with the raw data
to make them simpler and more effective for further pro-
cessing operations such as classification. There are vari-
ous preprocessing tools and methods such as normaliza-
tion (i.e., conversion of data into new data with appropri-
ate change or distribution range), whitening (to uncorre-
lated the data), and reduced dimensions (to remove repet-
itive, irrelevant, or extra data for the classification).

In this section, the feature extraction procedures of
the time, frequency, and time–frequency methods are dis-
cussed for the signals obtained in the previous section.

Of time features including the signal features in the
time domain, eight features were extracted for each data
cycle. Moreover, 10 features were extracted for any given
data cycle from the frequency features, which include
frequency characteristics of vibration signals in the fre-
quency domain. In continuance, the existing datawere an-
alyzed up to level 3 to extract time–frequency features us-
ing wavelet packet analysis. Then, all 12 features obtained
at different levelswere used for feature extraction. Two fea-
tures including standard deviation and signal energywere
extracted from each signal. In other words, a total of 24
time–frequency features were extracted from each exist-

ing data cycle. Table 1, for example, represents the stan-
dard deviation of the signal at the third level of wavelet
packet for the data cycle and different states of the compos-
ites. Evidently, this feature cannot distinguish different de-
fects at a glance and this indicates the need for a stronger
process to distinguish different states.

Table 1: Standard deviation of the signal at the third level of wavelet
packet

Signal/
status

Non-
defective

Defects
of small
size

Defects
of

medium
size

Separate
location
defect

AAA3 7.534 7.160 8.91 8.91
DAA3 18.87 12.35 12.76 41.73
ADA3 23.15 20.83 18.14 14.73
DDA3 44.35 38.43 39.94 42.82
AAD3 6.754 1.32 2.64 17.24
DAD3 8.67 7.51 6.64 9.89
ADD3 32.49 29.58 25.70 22.89
DDD3 46.49 35.72 33.48 38.59

4.3 Selecting features from vibration signals

As all extracted features do not contain important and nec-
essary information and given that the volume of data pro-
vided by the discrete wavelet coefficients is extremely high
and that processing these data is difficult, in general, and
impossible to be applied to intelligent systems in particu-
lar, effective features then should be selected so that they
provide more information about the composite state. In
this respect, statistical data obtained from discrete coeffi-
cients are usually calculated and are used as the basis of
comparison.

Because all extracted features do not contain impor-
tant and necessary information, therefore, effective fea-
tures representing greater and more significant informa-
tion about various defects of the composite panels should
be selected. For this purpose, one of the feature selection
algorithms called IDE was used. The threshold limit of the
IDE algorithm was set at 0.5 for feature selection in the
time-domain method. Of eight time-domain features, only
three features (namely, Kurtosis, Crest Factor, and number
of peak amplitudes) had a value greater than the thresh-
old value. The threshold limit of the IDE algorithm was
also set at 0.5 for feature selection in the frequency do-
mainmethod. Of 10 features, 4 frequency features, namely,
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Figure 6: Classifying test data using IDE parameters and the k-NN algorithm

F3, F5, F8, and F9, had a value greater than the thresh-
old value. Finally, the following eight features in time–
frequency domain method, respectively, had the greatest
threshold values above 0.5.

1. Signal SD (AAD3)
2. Signal Energy (ADD3)
3. Signal SD (DAA3)
4. Signal SD (ADA3)
5. Signal SD (DDA3)
6. Signal Energy (AAA3)
7. Signal SD (DAD3)
8. Signal Energy (DAA3)

The features of the vibration signals show that less-
concerned features containedmore useful information. As
this number of features is large to be used for the input
of a classification system and greatly reduces the speed
in these systems, therefore, the IDE algorithm with the
threshold limit of 0.7 was again run for 15 features selected
from the previous stage. At this phase, five following fea-
tures had values greater than or equal to the threshold
value: Kurtosis, F8, F9, Signal SD (AAD3), and Signal SD
(DAA3).

4.4 Composite State Classification

After obtaining the most effective features, the different
states of composite plates were classified. As observed in
the previous section, the problem of classifying composite
faults is not simple, and it is not possible to classify the
composites with a glance at the data. To solve this prob-
lem, different classificationmethods were used. Themeth-
ods used in this research were ANFIS, SVM, KNN, neural
network model, XCS classifier system, and improved XCS.
Groupings are given in the following sections and in Ta-
ble 2.

Table 2: Number of classification of composite plates

Group Healthy Slightly
defective

Moderately
defective

Separate
location
fault

Number 1 2 3 4

4.4.1 Classification with k-NN

The average precision resulted from 10 applications of the
k-nearest neighbors (k-NNs) algorithm to the test data set
for a certain number of neighbors is given in Table 3. For
k = 23, the average precision was more satisfactory than
other values.

After setting k to 23 (k = 23), the k-NN algorithm was
applied to the test data.

As seen in Figure 6, the k-NN method failed to accu-
rately classify all of the test data. In other words, of the 40
test data items, 32 data items are classified accurately and
8 data items are classified inaccurately.

4.4.2 Classification with SVM

The data was divided into the training and testing cate-
gories. Of the 240 data items, 200 items were selected as
training data and 40 as test data. The output diagram re-
sulted from the application of thismethod to each test data
item was prepared.

As seen in Figure 7, SVM yielded better results than k-
NN, because of the 40 test data items, 33 were recognized
accurately and 7 were identified inaccurately.
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Table 3: k-Value average precision

K value 15 17 19 21 23 25 27
Average precision 70.2 71.4 74.8 78.95 80 79.19 78.63

Figure 7: Classifying test data using IDE parameters and the SVM method

Figure 8: Test data classification using IDE parameters and the MLP method

Figure 9: Test data classification using IDE parameters and the RBF method

4.4.3 Classification with Neural Networks

Following a trial-and-error process, the best MLP neural
network was obtained with the specifications given in Ta-
ble 4.

As shown in Figure 8, from a population of 40 data
items, the MLP neural network recognized 33 data accu-
rately and 7 data inaccurately, but it yielded wrong re-
sults for two classes of classification data, which is a ma-

jor weakness. For data classification in an RBF neural net-
work, the diffusion of the RBF must be determined. This
value was calculated to be 0.4 following several trial-and-
error operations.

As seen in Figure 9, the classification by the RBF neu-
ral network was wrong for four data classes, and it caused
a larger output error than the MLP neural network. There-
fore, the MLP neural network demonstrated a better per-
formance than the RBF neural network.



A Comparative Analysis of Artificial Intelligence-Based Methods | 121

Figure 10: Test data classification with IDE parameters and the neuro-fuzzy network method

Figure 11: Test data classification using IDE parameters and the weighted neuro-fuzzy network method

Table 4: Specifications of the best neural network

Number of
hidden
layers

Number of
neurons in the
first hidden

layer

Number of
neurons in the
second hidden

layer

Number of
neurons in the
third hidden

layer

Number of
neurons in the
fourth hidden

layer

Prevention
method

Neuron
transfer
function

4 8 7 10 7 Following
error

propagation

Hyperbolic
tangent

Table 5:Weights of the input to the ANFIS network

Input no. 1 2 3 4
Weight 0.893 1 0.716 0.638

4.4.4 Classification with Neuro-Fuzzy Neural Network
Method

Before training the system, first, the data was clustered
using the subtractive method, which assumes 6 Gaussian
functions for each input and then trains the system using
a mixed training method.

After assigning weights to the network inputs, data
were classified for the ANFIS network (Figure 10 and Ta-

ble 4). Figure 11 depicts the output of the new system for
the test data.

As seen in Figure 11, the new neuro-fuzzy neural net-
work recognized all of the 40 test data accurately.

4.4.5 Classification with the XCS

A total of 500 rule sets used in the XCS for recognizing the
features extracted with IDE were created randomly. These
rule sets included five condition sections and one result
section. Of the 240 existing data items, 200 were used as
training data and 40 were considered test data. After the
application of this method, the output diagram was pre-
pared for each test data item.
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Figure 12: Test data classification using IDE parameters and the classic XCS method

Figure 13: Test data classification using IDE parameters and the proposed XCS method

As seen in Figure 12, the classic XCSmethod classified
all of the test data accurately. Moreover, of the 40 test data,
it provided accurate solutions to 36 items and classified 4
data items inaccurately.

4.4.6 Classification with XCSN

A total of 500 rule sets used in the XCS for recognizing the
features extracted with IDE were created randomly. These
rule sets included five condition sections and one result
section. Of the 240 existing data items, 200 were used as
training data and 40 were considered test data. After the
application of this method, the output diagram was pre-
pared for each test data item.

As seen in Figure 13, the proposed XCS method classi-
fiedmost of the test data properly. Of the 40 test data items,
it classified 39 data items accurately and 1 data item inac-
curately. Moreover, as compared to the classic XCS and the
neuro-fuzzy neural network, it required a shorter training
and testing time.

5 Comparing Results of Fault
Diagnosis System

In this section, a comparison was made between the re-
sults of different fault classification methods in terms of
the computation cost and the percentage of accurate re-
sponses to test data using the two feature sets. To use ex-
periment results of computations under equal conditions,
all of the testswere carried out in laptopswith a 2.4-HzCPU
and a 4-GB RAM.

As specified in Table 5, the computational cost of the
KNN method compared to all the above measures is bet-
ter in terms of both feature selection modes; however, the
ANFIS method is the best method in terms of the correct
response percentage in both feature selection modes, and
with the help of the IDE algorithm, it correctly detects all
classifications of feature selection. Considering both com-
putational cost and correct response percentage, our pro-
posed method received an acceptable percentage of cor-
rect response as well as about half of the computational
cost of the ANFIS method. It is essential to note that se-
lecting a method for classification entirely depends on the
problem because the smallest percentage of error in some
medical issues that are directly associatedwith human life
cause a lot of damage. In these cases, the percentage of ac-
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Table 6: Comparison of the results of classification systems in detecting defects

Method Computational cost of
the initial (selection

in minutes)

Computational cost of
the IDE (selection in

minutes)

Correct response of
initial selection (%)

Correct response of
IDE selection (%)

SVM 4 5 80 82.5
ANFIS 8 10 92.5 100
MLP 4 4 85 82.5
RBF 5 5 82.5 82.5
KNN 2 2 77.5 80
XCS 5 6 85 90

IMPROVED XCS 4 6 90 97.5

curacy of amethod is considered as themost important pa-
rameter. On the other hand, the computational costmaybe
the most important parameter in selecting a detection sys-
tem. Hence, amethodwith the lowest required timewould
be used for this purpose.

As the time required for computational operations and
the percentage of accuracy in engineering problems such
as defect detection in composites must be acceptable, it is
recommended that the proposed method is used to solve
this problem.

6 Conclusions
In this research, fault detection of composite sheets using
vibratory signal processing and methods based on the AI
has been performed in such a way that vibratory signals
have been taken from healthy and faulty composite sheets.
Afterwards, using different methods of signal processing
in time–frequency domain, some properties have been ex-
tracted from these signals and the most effective proper-
ties that contain more information about these composite
sheets have been fed into different systems of classifica-
tion, and their outputs show the fault type of composite
sheet. The various systems of classification used in this re-
search are SVM, comparative neural fuzzy deduction sys-
tem, KNN, ANN, and the suggested optimized XCS algo-
rithm. The results indicate that ANFIS method is superior
concerning the accuracy,while it takes the longest runtime
in the equal running numbers. It is suggested that opti-
mized XCS method has a less accuracy than ANFIS but its
runtime in the equal running numbers is shorter than the
above method.
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